Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.623
Filtrar
1.
J Vis Exp ; (205)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619279

RESUMO

Respiratory tract infections (RTIs) are among the most common problems in clinical settings. Rapid and accurate identification of bacterial pathogens will provide practical guidelines for managing and treating RTIs. This study describes a method for rapidly detecting bacterial pathogens that cause respiratory tract infections via multi-channel loop-mediated isothermal amplification (LAMP). LAMP is a sensitive and specific diagnostic tool that rapidly detects bacterial nucleic acids with high accuracy and reliability. The proposed method offers a significant advantage over traditional bacterial culturing methods, which are time-consuming and often require greater sensitivity for detecting low levels of bacterial nucleic acids. This article presents representative results of K. pneumoniae infection and its multiple co-infections using LAMP to detect samples (sputum, bronchial lavage fluid, and alveolar lavage fluid) from the lower respiratory tract. In summary, the multi-channel LAMP method provides a rapid and efficient means of identifying single and multiple bacterial pathogens in clinical samples, which can help prevent the spread of bacterial pathogens and aid in the appropriate treatment of RTIs.


Assuntos
Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos , Infecções Respiratórias , Humanos , Microfluídica , Reprodutibilidade dos Testes , Infecções Respiratórias/diagnóstico , Klebsiella pneumoniae
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612622

RESUMO

Aspergillus species create major postharvest problems due to the food losses caused by their mere presence and the hazardous mycotoxins they produce, such as aflatoxin B1 (AFB1) and ochratoxin A (OTA). These mycotoxins are mainly produced by A. flavus and A. carbonarius, respectively. In this study, we developed a rapid detection method for the two aforementioned species based on loop-mediated isothermal amplification (LAMP). The primers were designed to target genes belonging to the mycotoxin clusters pks and aflT for A. carbonarius and A. flavus, respectively. Result visualization was carried out in real time via the detection of fluorescent signals. The method developed showed high sensitivity and specificity, with detection limits of 0.3 and 0.03 pg/reaction of purified DNA of A. carbonarius and A. flavus, respectively. The assays were further implemented on inoculated nuts, including pistachios and almonds, after one-step crude DNA extraction. These tests revealed a detection level of 0.5 spore/g that shows the effectiveness of LAMP as a rapid method for detecting potentially toxigenic Aspergillus spp. directly in food. The validation of the assays included tests on a larger scale that further confirmed their sensitivity and specificity, as well as enabling the production of ready-to-use LAMP prototype kits. These kits are easy to use and aim to simplify the screening of food samples in order to monitor the presence of specific Aspergillus contaminations.


Assuntos
Aspergillus flavus , Técnicas de Diagnóstico Molecular , Micotoxinas , Técnicas de Amplificação de Ácido Nucleico , Aspergillus flavus/genética , Nozes , DNA
3.
Front Cell Infect Microbiol ; 14: 1355056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606294

RESUMO

Edwardsiella piscicida, a significant intracellular pathogen, is widely distributed in aquatic environments and causes systemic infection in various species. Therefore, it's essential to develop a rapid, uncomplicated and sensitive method for detection of E. piscicida in order to control the transmission of this pathogen effectively. The recombinase-aided amplification (RAA) assay is a newly developed, rapid detection method that has been utilized for various pathogens. In the present study, a real-time RAA (RT-RAA) assay, targeting the conserved positions of the EvpP gene, was successfully established for the detection of E. piscicida. This assay can be performed in a one-step single tube reaction at a temperature of 39°C within 20 min. The RT-RAA assay exhibited a sensitivity of 42 copies per reaction at a 95% probability, which was comparable to the sensitivity of real-time quantitative PCR (qPCR) assay. The specificity assay confirmed that the RT-RAA assay specifically targeted E. piscicida without any cross-reactivity with other important marine bacterial pathogens. Moreover, when clinical specimens were utilized, a perfect agreement of 100% was achieved between the RT-RAA and qPCR assays, resulting a kappa value of 1. These findings indicated that the established RT-RAA assay provided a viable alternative for the rapid, sensitive, and specific detection of E. piscicida.


Assuntos
Edwardsiella , Recombinases , Técnicas de Amplificação de Ácido Nucleico/métodos , Edwardsiella/genética , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
4.
Anal Chem ; 96(15): 5752-5756, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38560822

RESUMO

Viruses are the primary cause of many infectious diseases in both humans and animals. Various testing methods require an amplification step of the viral RNA sample before detection, with quantitative reverse transcription polymerase chain reaction (RT-qPCR) being one of the most widely used along with lesser-known methods like Nucleic Acid Sequence-Based Amplification (NASBA). NASBA offers several advantages, such as isothermal amplification and high selectivity for specific sequences, making it an attractive option for low-income facilities. In this research, we employed a single electrochemical biosensor (E-Biosensor) designed for potentially detecting any virus by modifying the NASBA protocol. In this modified protocol, a reverse primer is designed with an additional 22-nucleotide sequence (tag region) at the 5'-end, which is added to the NASBA process. This tag region becomes part of the final amplicon generated by NASBA. It can hybridize with a single specific E-Biosensor probe set, enabling subsequent virus detection. Using this approach, we successfully detected three different viruses with a single E-Biosensor design, demonstrating the platform's potential for virus detection.


Assuntos
Técnicas Biossensoriais , Vírus , Animais , Humanos , Sensibilidade e Especificidade , Replicação de Sequência Autossustentável/métodos , RNA Viral/genética , RNA Viral/análise , Vírus/genética , Técnicas de Amplificação de Ácido Nucleico
5.
ACS Nano ; 18(15): 10454-10463, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38572806

RESUMO

DNA isothermal amplification techniques have been applied extensively for evaluating nucleic acid inputs but cannot be implemented directly on other types of biomolecules. In this work, we designed a proximity activation mechanism that converts protein input into DNA barcodes for the DNA exponential amplification reaction, which we termed PEAR. Several design parameters were identified and experimentally verified, which included the choice of enzymes, sequences of proximity probes and template strand via the NUPACK design tool, and the implementation of a hairpin lock on the proximity probe structure. Our PEAR system was surprisingly more robust against nonspecific DNA amplification, which is a major challenge faced in existing formats of the DNA-based exponential amplification reaction. The as-designed PEAR exhibited good target responsiveness for three protein models with a dynamic range of 4-5 orders of magnitude down to femtomolar input concentration. Overall, our proposed protein-to-DNA converter module led to the development of a stable and robust configuration of the DNA exponential amplification reaction to achieve high signal gain. We foresee this enabling the use of protein inputs for more complex molecular evaluation as well as ultrasensitive protein detection.


Assuntos
Técnicas Biossensoriais , DNA , DNA/genética , DNA/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos
6.
Anal Chim Acta ; 1302: 342486, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580404

RESUMO

BACKGROUND: Analysis of CpG methylation is informative for cancer diagnosis. Previously, we developed a novel method to discriminate CpG methylation status in target DNA by blocking recombinase polymerase amplification (RPA), an isothermal DNA amplification technique, using methyl-CpG binding domain (MBD) protein 2 (MBD2). The method was named MBD protein interference-RPA (MBDi-RPA). In this study, MBDi-RPA was performed using methyl-CpG binding protein 2 (MeCP2), another MBD family protein, as the blocking agent. RESULTS: MBDi-RPA using MeCP2 detected low levels of CpG methylation, showing that it had higher sensitivity than MBDi-RPA using MBD2. We also developed real-time RPA, which enabled rapid analysis of DNA amplification without the need for laborious agarose gel electrophoresis and used it in combination with MBDi-RPA. We termed this method real-time MBDi-RPA. The method using MeCP2 could determine the abundance ratio of CpG-methylated target DNA simply and rapidly, although highly sensitive detection was challenging. SIGNIFICANCE AND NOVELTY: Real-time MBDi-RPA using MeCP2 could be potentially useful for estimating CpG methylation status in target DNA prior to more detailed analyses.


Assuntos
Metilação de DNA , Técnicas de Amplificação de Ácido Nucleico , DNA/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases
7.
Mikrochim Acta ; 191(5): 248, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587676

RESUMO

Tumor-associated antigen (TAA)-based diagnosis has gained prominence for early tumor screening, treatment monitoring, prognostic assessment, and minimal residual disease detection. However, limitations such as low sensitivity and difficulty in extracting non-specific binding membrane proteins still exist in traditional detection methods. Upconversion luminescence (UCL) exhibits unique physical and chemical properties under wavelength near-infrared light excitation. Rolling circle amplification (RCA) is an efficient DNA amplification technique with amplification factors as high as 105. Therefore, the above two excellent techniques can be employed for highly accurate imaging analysis of tumor cells. Herein, we developed a novel nanoplatform for TAA-specific cell imaging based on UCL and RCA technology. An aptamer-primer complex selectively binds to Mucin 1 (MUC1), one of TAA on cell surface, to trigger RCA reaction, generating a large number of repetitive sequences. These sequences provide lots of binding sites for complementary signal probes, producing UCL from lanthanide-doped upconversion nanoparticles (UCNPs) after releasing quencher group. The experimental results demonstrate the specific attachment of upconversion nanomaterials to cancer cells which express a high level of MUC1, indicating the potential of UCNPs and RCA in tumor imaging.


Assuntos
Luminescência , Ácidos Nucleicos , Diagnóstico por Imagem , Membrana Celular , Técnicas de Amplificação de Ácido Nucleico
8.
Arch Virol ; 169(5): 94, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594417

RESUMO

Considering that avian leukosis virus (ALV) infection has inflicted massive economic losses on the poultry breeding industry in most countries, its early diagnosis remains an important measure for timely treatment and control of the disease, for which a rapid and sensitive point-of-care test is required. We established a user-friendly, economical, and rapid visualization method for ALV amplification products based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) combined with an immunochromatographic strip in a lateral flow device (LFD). Using the ALVp27 gene as the target, five RT-LAMP primers and one fluorescein-isothiocyanate-labeled probe were designed. After 60 min of RT-LAMP amplification at 64 °C, the products could be visualized directly using the LFD. The detection limit of this assay for ALV detection was 102 RNA copies/µL, and the sensitivity was 100 times that of reverse transcription polymerase chain reaction (RT-PCR), showing high specificity and sensitivity. To verify the clinical practicality of this assay for detecting ALV, the gold standard RT-PCR method was used for comparison, and consistent results were obtained with both assays. Thus, the assay described here can be used for rapid detection of ALV in resource-limited environments.


Assuntos
Vírus da Leucose Aviária , Técnicas de Diagnóstico Molecular , Transcrição Reversa , Animais , Vírus da Leucose Aviária/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos
9.
Proc Natl Acad Sci U S A ; 121(16): e2400203121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598338

RESUMO

Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.


Assuntos
Nanoporos , Infecção por Zika virus , Zika virus , Animais , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Primatas/genética , Zika virus/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico
10.
Nat Commun ; 15(1): 3279, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627378

RESUMO

The emerging monkeypox virus (MPXV) has raised global health concern, thereby highlighting the need for rapid, sensitive, and easy-to-use diagnostics. Here, we develop a single-step CRISPR-based diagnostic platform, termed SCOPE (Streamlined CRISPR On Pod Evaluation platform), for field-deployable ultrasensitive detection of MPXV in resource-limited settings. The viral nucleic acids are rapidly released from the rash fluid swab, oral swab, saliva, and urine samples in 2 min via a streamlined viral lysis protocol, followed by a 10-min single-step recombinase polymerase amplification (RPA)-CRISPR/Cas13a reaction. A pod-shaped vest-pocket analysis device achieves the whole process for reaction execution, signal acquisition, and result interpretation. SCOPE can detect as low as 0.5 copies/µL (2.5 copies/reaction) of MPXV within 15 min from the sample input to the answer. We validate the developed assay on 102 clinical samples from male patients / volunteers, and the testing results are 100% concordant with the real-time PCR. SCOPE achieves a single-molecular level sensitivity in minutes with a simplified procedure performed on a miniaturized wireless device, which is expected to spur substantial progress to enable the practice application of CRISPR-based diagnostics techniques in a point-of-care setting.


Assuntos
Exantema , Vírus da Varíola dos Macacos , Humanos , Masculino , Bioensaio , Morte Celular , Nucleotidiltransferases , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Sistemas CRISPR-Cas , Recombinases
11.
J Infect Dev Ctries ; 18(3): 435-440, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38635619

RESUMO

INTRODUCTION: Tubercular meningitis (TBM) is a serious public health problem in developing countries as it leads to significant mortality and residual neurological sequelae. The estimated mortality due to TBM in India is 1.5 per 100,000 population. In resource-limited settings, only the Ziehl-Neelsen (ZN) stain, which has very little sensitivity, is available. The World Health Organization recommended the Loop Mediated Isothermal Amplification (TB LAMP) assay for pulmonary tuberculosis only. We evaluated this test for tubercular meningitis as well. METHODOLOGY: In a cross-sectional study of 2-year duration, we have taken 239 cerebrospinal fluid samples from suspected cases of tubercular meningitis patients. ZN staining along with Mycobacteria Growth Indicator Tube (MGIT) TB culture, Xpert MTB/RIF Ultra assay, and commercial TB LAMP assay were performed for each sample. RESULTS: Out of 239 samples, 40 samples (16.73%) were found TB LAMP assay positive, 48 samples (20.08%) were found Xpert ultra-assay positive, 12 samples (5.02%) were MGIT TB culture positive and acid-fast bacillus smear positive in ten samples (4.18 %). Out of 12 MGIT-positive samples, all samples (100%) were TB LAMP and Xpert ultra positive and one sample (8.33%) was ZN smear positive. In 199 negative samples from the TB LAMP assay, eight samples were positive by Xpert, none by MGIT TB culture and AFB smear. Sensitivity and specificity were found as 100% and 87.66%, respectively, for the TB LAMP assay. CONCLUSION: TB LAMP assay is a rapid, cost-effective, sensitive, and specific test for tubercular meningitis infection in resource-limited settings.


Assuntos
Técnicas de Diagnóstico Molecular , Mycobacterium tuberculosis , Técnicas de Amplificação de Ácido Nucleico , Tuberculose Meníngea , Humanos , Tuberculose Meníngea/diagnóstico , Mycobacterium tuberculosis/genética , Região de Recursos Limitados , Estudos Transversais , Sensibilidade e Especificidade , Escarro/microbiologia
12.
Anal Chim Acta ; 1304: 342541, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637051

RESUMO

BACKGROUND: Digital polymerase chain reaction (digital PCR) is an important quantitative nucleic acid analysis method in both life science research and clinical diagnostics. One important hypothesis is that by physically constraining a single nucleic acid molecule in a small volume, the relative concentration can be increased therefore further improving the analysis performance, and this is commonly defined as the confinement effect in digital PCR. However, experimental investigation of this confinement effect can be challenging since it requires a microfluidic device that can generate partitions of different volumes and an instrument that can monitor the kinetics of amplification. (96). RESULTS: Here, we developed a real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip) that can generate droplet of 125 nL, 25 nL, 5 nL, and 1 nL by a simple "load-slip" operation. In the digital region, by reducing the volume, the relative concentration is increased, the amplification kinetic can be accelerated, and the time to reach the fluorescence threshold, or Cq value, can be reduced. When the copy number per well is much higher than one, the relative concentration is independent of the partition volume, thus the amplification kinetics are similar in different volume partitions. This system is not limited to studying the kinetics of digital nucleic acid amplification, it can also extend the dynamic range of the digital nucleic acid analysis by additional three orders of magnitude by combining a digital and an analog quantification algorithm. (140). SIGNIFICANCE: In this study, we experimentally investigated for the first time the confinement effect in the community of digital PCR via a new real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip). And a wider dynamic range of quantification methods compared to conventional digital PCR was validated by this system. This system provides emerging opportunities for life science research and clinical diagnostics. (63).


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos , Reação em Cadeia da Polimerase em Tempo Real , Técnicas de Amplificação de Ácido Nucleico/métodos , Dispositivos Lab-On-A-Chip , Algoritmos
13.
Biotechnol J ; 19(4): e2400026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622795

RESUMO

Single-stranded DNA (ssDNA) is the foundation of modern biology, with wide applications in gene editing, sequencing, DNA information storage, and materials science. However, synthesizing ssDNA with high efficiency, high throughput, and low error rate in vitro remains a major challenge. Various methods have been developed for ssDNA synthesis, and some significant results have been achieved. In this review, six main methods were introduced, including solid-phase oligonucleotide synthesis, terminal deoxynucleotidyl transferase-based ssDNA synthesis, reverse transcription, primer exchange reaction, asymmetric polymerase chain reaction, and rolling circle amplification. The advantages and limitations of each method were compared, as well as illustrate their representative achievements and applications. Especially, rolling circle amplification has received significant attention, including ssDNA synthesis, assembly, and application based on recent work. Finally, the future challenges and opportunities of ssDNA synthesis were summarized and discussed. Envisioning the development of new methods and significant progress will be made in the near future with the efforts of scientists around the world.


Assuntos
DNA de Cadeia Simples , DNA , DNA de Cadeia Simples/genética , Reação em Cadeia da Polimerase/métodos , DNA Polimerase Dirigida por DNA , Oligonucleotídeos , Técnicas de Amplificação de Ácido Nucleico/métodos
14.
Mol Biol Rep ; 51(1): 490, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578476

RESUMO

BACKGROUND: One of the most challenging aspects of nucleic acid amplification tests is the extraction of genomic DNA. However, achieving satisfactory quality and quantity of genomic DNA is not always easy, while the demand for rapid, low-cost and less laborious DNA isolation methods is ever-increasing. METHODS AND RESULTS: We have developed a rapid (⁓2 min) crude DNA extraction method leading to direct-PCR that requires minimum reagents and laboratory equipment. It was developed by eliminating the time-consuming purification steps of DNA extraction, by processing the sample in optimized amounts of Taq KCl PCR buffer and DNARelease Additive/Proteinase K in only two minutes and carrying out amplification using conventional Taq DNA polymerase. The DNA preparation method was validated on muscle tissue samples from 12 different species as well as 48 cooked meat samples. Its compatibility was also successfully tested with different types of PCR amplification platforms extensively used for genetic analysis, such as simplex PCR, PCR-RFLP (Restriction Fragment Length Polymorphism), multiplex PCR, isothermal amplification, real-time PCR and DNA sequencing. CONCLUSIONS: The developed protocol provides sufficient amount of crude DNA from muscle tissues of different species for PCR amplifications to identify species-of-origin via different techniques coupled with PCR. The simplicity and robustness of this protocol make nucleic acid amplification assays more accessible and affordable to researchers and authorities for both laboratory and point-of-care tests.


Assuntos
DNA , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/genética , Sequência de Bases , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase em Tempo Real , Músculos
15.
Anal Chim Acta ; 1302: 342474, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580403

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is a common modification in RNA, crucial for various cellular functions and associated with human diseases. Quantification of m6A at single-base resolution is of great significance for exploring its biological roles and related disease research. However, existing analysis techniques, such as polymerase chain reaction (PCR) or loop-mediated isothermal amplification (LAMP), face challenges like the requirement for thermal cycling or intricate primer design. Therefore, it is urgent to establish a simple, non-thermal cycling and highly sensitive assay for m6A. RESULTS: Leveraging the inhibitory effect of m6A on primer elongation and uncomplicated feature of the isothermal exponential amplification reaction (IEXPAR), we have developed an extension-based IEXPAR (E-IEXPAR). This approach requires just a single extension primer and one template, simplifying the design process in comparison to the more complex primer requirements of the LAMP methods. The reactions are conducted at constant temperatures, therby elimiating the use of thermal cycling that needed in PCR methods. By combining IEXPAR with an extension reaction, E-IEXPAR can identify m6A in RNA concentrations as low as 4 fM. We have also introduced a new analytical model to process E-IEXPAR results, which can aid to minimize the impact of unmodified adenine (A) on m6A measurements, enabling accurate m6A quantification in small mixed samples and cellular RNA specimens. SIGNIFICANCE AND NOVELTY: E-IEXPAR streamlines m6A detection by eliminating the need for intricate primer design and thermal cycling, which are common in current analytical methods. Its utilization of an extension reaction for the initial identification of m6A, coupled with a novel calculation model tailored to E-IEXPAR outcomes, ensures accurate m6A selectivity in mixed samples. As a result, E-IEXPAR offers a reliable, straightforward, and potentially economical approach for specifically assaying m6A in both biological function studies and clinical research.


Assuntos
Adenosina/análogos & derivados , Técnicas de Amplificação de Ácido Nucleico , RNA , Humanos , Primers do DNA/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Temperatura , Sensibilidade e Especificidade
16.
J Med Virol ; 96(3): e29481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425184

RESUMO

Hepatitis C remains a global health problem, especially in poverty-stricken areas. A rapid and sensitive point-of-care (POC) diagnostic tool is critical for the early detection and timely treatment of hepatitis C virus (HCV) infection. Here, for the first time, we reported a novel molecular diagnostic assay, termed reverse transcription multiple cross displacement amplification integrated with a gold-nanoparticle-based lateral flow biosensor (RT-MCDA-AuNPs-LFB), which was developed for rapid, sensitive, specific, and visual identification of HCV. HCV-RT-MCDA induced rapid isothermal amplification through a specific primer set targeting the 5'untranslated region gene from the major HCV genotypes 1b, 2a, 3b, 6a, and 3a that are prevalent in China. The optimal reaction temperature and time for RT-MCDA-AuNPs-LFB were 68°C and 25 min, respectively. The limit of detection of the assay was 10 copies per test, and the specificity was 100% for the experimental strains. The whole detection procedure, including crude nucleic acid isolation (~5 min), RT-MCDA (68°C, 25 min), and visual AuNPs-LFB result confirmation (less than 2 min), was performed within 35 min. The preliminary results indicated that the HCV-RT-MCDA-AuNPs-LFB assay could be a valuable tool for sensitive, specific, visual, cost-saving, and rapid detection of HCV and has potential as a POC diagnostic platform for field screening and early clinical detection of HCV infection.


Assuntos
Técnicas Biossensoriais , Hepatite C , Nanopartículas Metálicas , Humanos , Hepacivirus/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Ouro , Hepatite C/diagnóstico , Técnicas Biossensoriais/métodos
17.
Front Cell Infect Microbiol ; 14: 1281827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465235

RESUMO

With growing concerns about Group B streptococcal (GBS) infections and their adverse effects on perinatal pregnancies, including infection, premature delivery, neonatal septicemia, and meningitis, it is urgent to promote GBS screening at all pregnancy stages. The purpose of this study is to establish a device-independent, fast, sensitive, and visual GBS detection method. Taking advantage of the characteristics of the recombinase polymerase isothermal amplification (RPA), the activity of the nfo nuclease cleavage base analog (tetrahydrofuran, THF) site, and the advantages of visual reading of the lateral flow chromatography strip (LFS), a GBS detection method was developed. This method focused on the conservative region of the Christie-Atkins-Munch-Petersen factor encoded by the cfb gene, a virulence gene specific to GBS. Two forward primers, two biotin-labeled reverse primers, and one fluorescein isothiocyanate (FITC)-labeled and C3spacer-blocked probe were designed. The study involved optimizing the primer pair and probe combination, determining the optimal reaction temperature and time, evaluating specificity, analyzing detection limits, and testing the method on 87 vaginal swabs from perinatal pregnant women. The results showed that the visual detection method of GBS-RPA-LFS, using the cfb-F1/R2/P1 primer probe, could detect GBS within 15 min at the temperature ranging from 39°C to 42°C. Furthermore, the method specifically amplified only GBS, without cross-reacting with pathogens like Lactobacillus iners, Lactobacillus crispatus, Candida albicans, Listeria monocytogenes, Yersinia enterocolitica, Klebsiella Pneumoniae, Enterobacter cloacae, Citrobacter freundii, Vibrio alginolyticus, Vibrio parahaemolyticus, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa, or Trichomonas vaginalis. It could detect a minimum of 100 copies per reaction. In clinical 98 samples of vaginal swabs from pregnant women, the agreement rate between the GBS-RPA-LFS method and TaqMan real-time fluorescence quantification method was 95.92%. In conclusion, this study successfully established a combined RPA and LFS GBS in situ detection platform, with short reaction time, high sensitivity, high specificity, portability, and device independence, providing a feasible strategy for clinical GBS screening.


Assuntos
Recombinases , Infecções Estreptocócicas , Recém-Nascido , Feminino , Gravidez , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Patologia Molecular , Nucleotidiltransferases , Streptococcus agalactiae/genética , Infecções Estreptocócicas/diagnóstico
18.
Molecules ; 29(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474657

RESUMO

DNA polymerases are important enzymes that synthesize DNA molecules and therefore are critical to various scientific fields as essential components of in vitro DNA synthesis reactions, including PCR. Modern diagnostics, molecular biology, and genetic engineering require DNA polymerases with improved performance. This study aimed to obtain and characterize a new CL7-Taq fusion DNA polymerase, in which the DNA coding sequence of Taq DNA polymerase was fused with that of CL7, a variant of CE7 (Colicin E7 DNase) from Escherichia coli. The resulting novel recombinant open reading frame was cloned and expressed in E. coli. The recombinant CL7-Taq protein exhibited excellent thermostability, extension rate, sensitivity, and resistance to PCR inhibitors. Our results showed that the sensitivity of CL7-Taq DNA polymerase was 100-fold higher than that of wild-type Taq, which required a template concentration of at least 1.8 × 105 nM. Moreover, the extension rate of CL7-Taq was 4 kb/min, which remarkably exceeded the rate of Taq DNA polymerase (2 kb/min). Furthermore, the CL7 fusion protein showed increased resistance to inhibitors of DNA amplification, including lactoferrin, heparin, and blood. Single-cope human genomic targets were readily available from whole blood, and pretreatment to purify the template DNA was not required. Thus, this is a novel enzyme that improved the properties of Taq DNA polymerase, and thus may have wide application in molecular biology and diagnostics.


Assuntos
Escherichia coli , Técnicas de Amplificação de Ácido Nucleico , Humanos , Taq Polimerase/metabolismo , Escherichia coli/metabolismo , Reação em Cadeia da Polimerase/métodos , DNA/metabolismo , Proteínas Recombinantes/metabolismo
19.
Angew Chem Int Ed Engl ; 63(17): e202318800, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38443316

RESUMO

Organic small-molecule fluorophores, characterized by flexible chemical structure and adjustable optical performance, have shown tremendous potential in biosensing. However, classical organic fluorophore motifs feature large overlap between excitation and emission spectra, leading to the requirement of advanced optical set up to filter desired signal, which limits their application in scenarios with simple settings. Here, a series of wavelength-tunable small-molecule fluorescent dyes (PTs) bearing simple organic moieties have been developed, which exhibit Stokes shift up to 262 nm, molar extinction coefficients ranged 30,000-100,000 M-1 cm-1, with quantum yields up to 54.8 %. Furthermore, these dyes were formulated into fluorescent nanoparticles (PT-NPs), and applied in lateral flow assay (LFA). Consequently, limit of detection for SARS-CoV-2 nucleocapsid protein reached 20 fM with naked eye, a 100-fold improvement in sensitivity compared to the pM detection level for colloidal gold-based LFA. Besides, combined with loop-mediated isothermal amplification (LAMP), the LFA system achieved the visualization of single copy level nucleic acid detection for monkeypox (Mpox).


Assuntos
Nanopartículas , Ácidos Nucleicos , Corantes Fluorescentes/química , Nanopartículas/química , Técnicas de Amplificação de Ácido Nucleico
20.
Chem Commun (Camb) ; 60(28): 3778-3781, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38494893

RESUMO

A twice-walk strategy based on a three-dimensional (3D) cleat-equipped DNA walking machine with a high signal amplification efficiency was investigated for ultrasensitive detection of miRNA. Impressively, addition of duplex-specific nuclease (DSN) just once drove the twice-walk strategy, making the strategy simpler. With the advantages of being simple, rapid and ultrasensitive, the biosensor offers potential for use in early clinical diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , MicroRNAs/genética , DNA , Técnicas Biossensoriais/métodos , Endonucleases , Técnicas de Amplificação de Ácido Nucleico/métodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...